Kolawole Oluseyi Ajanaku*1 , Olabisi Theresa Ademosun1, Tolutope Oluwasegun Siyanbola1, Anuoluwa Abimbola Akinsiku1, Christiana Oluwatoyin Ajanaku1 and Obinna Ckukwuemeka Nwinyi2
1Department of Industrial Chemistry, Covenant University, Km 10, Idiroko Road, Canaanland, Ota, Nigeria
2Department of Biological Sciences, Covenant University, Km 10, Idiroko Road, Canaanland, Ota, Nigeria.
Corresponding Author Email: kola.ajanaku@covenantuniversity.edu.ng
The deficiency in affordable nourishing foods for neonates after weaning has been major concern in developing countries and this has contributed to increased malnutrition rate, illnesses and even children’s mortality rate. The addition of wheat offal to traditionally affordable ‘Ogi’ as an alternative approach for combating the threats of protein malnutrition in neonates was explored in this work. Wheat offal was added at increasing levels of 0, 20, 40, 60, 80 and 100 w/w% as fortifying feed with prepared maize-Ogi as meal. Proximate analysis, pasting characteristics, sensory evaluation, nutritive and functional properties of the resulting blends was evaluated using standard methods. Results of proximate analysis showed an increased protein (2.787 – 34.064%), fat (2.282 – 9.015%) and ash (8.913 – 17.171%) contents with increased level of wheat offal from 20 to 100 w/w addition, while decreased carbohydrate content was observed with increased addition of wheat offal. The water absorption capacity increased also with level of wheat offal addition. The pasting characteristics result indicated up to 40% fortification of maize-Ogi with wheat offal as stable blend against retrogradation in terms of setback value and viscosity. The 40% level of fortification was preferred in terms of quality index of taste, texture, color, sourness and appearance. In conclusion, the nutritional indices investigated indicated addition level of wheat offal to 40% limit to solve protein-energy malnutrition and food security issues in neonates.
Functional properties; Malnutrition; Maize ogi; Neonates; Organoleptic assessment; Proximate composition; Wheat offal