Deepak Subramani*, Sharmila Tamilselvan, Maheswari Murugesan, Shivaswamy M S
Department of Food Technology, Kongu Engineering College, Erode, India.
Corresponding Author Email: deepaksiragiri@gmail.com
The superfood quinoa is an extremely nutritious and ancient pseudocereal grain particularly known for its protein quality and bioactive compounds, compared to other cereals. Quinoa seeds can be processed into a crispy, cellular-structured and expanded whole-grain snack product by low capital cost involving traditional sand puffing method. The study aims to statistically optimize the processing conditions for sand puffing of quinoa. The moisture-treated and salt-treated quinoa grains were mixed with a high-temperature sand bed for a predetermined time to induce grain expansion. Puffing conditions were optimized using Box-Behnken design by varying the factors such as moisture added (0.2-1.8 ml/10 g grains), salt concentration (0-1%), puffing temperature (200-240 ºC) and puffing time (20-60 s). It was found that measured response parameters like puffing yield, expansion ratio, flake size and overall acceptability of puffed quinoa significantly (p<0.05) increased with a decrease in moisture added and salt concentration, and increase in puffing temperature and puffing time. Bulk density of puffed quinoa had a negative correlation with puffing temperature and puffing time. The optimum condition of 0.2 ml moisture added/10 g grains, 0.2% salt concentration, 229ºC puffing temperature and 55 s puffing time was predicted to generate puffing yield of 86.23%, expansion ratio of 3.08, flake size of 8.21 mm3, bulk density of 0.36 g/ml and overall acceptability score of 8.65. The higher yield, three-fold expansion and superior sensory attributes of puffed quinoa achieved from optimized sand puffing condition would benefit the manufactures and be nutritious snack food for consumers to combat malnutrition.
Expansion; Sand Puffing; Quinoa; Snack; Sensory