Close

Current Research in Nutrition and Food Science - An open access, peer reviewed international journal covering all aspects of Nutrition and Food Science

lock and key

Sign in to your account.

Account Login

Forgot your password?

Hypolipidemic  Dietary  Components

Jagmeet Madan and Ankita Narsaria

Department  of  Food  and  Nutrition,  SVT  College  of  Home  Science,  SNDT  Women’s  University,  Juhu,  Mumbai, India.

DOI : https://dx.doi.org/10.12944/CRNFSJ.1.1.06

Article Publishing History

Received: July 31, 2013

Accepted: August 18, 2013

Published Online: 27-08-2013

Plagiarism Check: Yes

Article Metrics

Views  

PDF Download  PDF Downloads: 2115
Abstract:

Several prospective epidemiological studies over the past 20 years concluded that ingestion of certain food or dietary components improves serum lipid profile and are effective in management of hyperlipidemia. The objective of this paper is to identify and quantify selective lipid lowering dietary components. This review focuses on identifying, quantifying and understanding the possible mechanism of action of soy, flaxseeds, oats and psyllium in improving lipid profile and reducing atherosclerotic cardiovascular disease (ASCVD) risk factor. A systematic search of database was performed to retrieve studies of published human studies and trials from 1995-2012, concentrating on recent systematic reviews, meta-analysis and intervention trials done to further elucidate the role of selective food (soy, oats, flaxseeds and psyllium) and their bioactive components (soy protein, soy isoflavones, flaxseed lignan, flaxseed omega 3 fatty acid, b-glucan, insoluble fiber) involved in improving lipid profile and reducing the cardiovascular disease risks. The findings quantify the amounts showing beneficial effects on serum lipid profile. Overall, the review of these clinical evidences suggested that inclusion of these food items can moderately but significantly reduce the risk of dyslipidemia, when consumed regularly as a part of a healthy diet and thus may help reduce any untoward cardiovascular event

Keywords:

soy,flaxseeds,psyllium,oats,lipid profile

Download this article as: 

Copy the following to cite this article:

Madan J, Narsaria A. Hypolipidemic Dietary Components. Curr Res Nutr Food Sci 2013;1(1):59-70 doi : http://dx.doi.org/10.12944/CRNFSJ.1.1.06


Copy the following to cite this URL:

Madan J, Narsaria A. Hypolipidemic Dietary Components. Curr Res Nutr Food Sci 2013;1(1):59-70. Available from: http://www.foodandnutritionjournal.org/?p=299


Introduction

Cardiovascular diseases (CVD) are the most prevalent cause of death and disability in both developed as well as developing countries.  INDIA is one of  the leading nations in ASCVD and is already a global capital of diabetes. In 2005, 29% of deaths in INDIA occurred  alone due to CVD.1 According to the recent estimates about 2.9 crores India’s population is burdened with CVD and may increase to 6.4 crores,  if no early intervention steps are taken. Dyslipidemia has been found to be one of the most important contributing factors.2

Dyslipidemia describes a number of abnormalities in lipoprotein homeostasis including hypercholesterolemia and hypertriglceridemia.  Several co-morbid conditions like myocardial infarction, stroke, atherosclerosis, nephropathy, fatty liver cirrhosis and many others are  associated with dyslipidemia. Therefore, reductions in dyslipidemic conditions and eventually CHD risk begin with the adoption of a  healthy lifestyle. Thus, as a part of a comprehensive strategy to reduce complications of hypercholesterolemia, NCEP (National Cholesterol Education Programme) endorsed the use of several lipid lowering dietary agents.3

This review emphasize on the quantity of soy, flaxseeds, oats and psyllium that have shown to improve the lipid profile, the mechanisms  of each bioactive component responsible in reducing the risk of ASCVD and several human clinical trials data regarding their safety and  efficacy.

Bioactive Components

Dietary Fiber (DF) are the edible parts of plants or analogous carbohydrate that are resistant to digestion & absorption in the human  intestine with complete or partial fermentation in the large intestine and which promote beneficial physiological effects including laxation and blood glucose attenuation and /or blood cholesterol attenuation. Total dietary fiber (TDF) occurs in 2 major forms i.e. soluble  dietary fiber (SDF) and insoluble dietary fiber (IDF).DF content of various foods are mentioned in Table 1.

Table  1.  Dietary  fiber  content  of  selected  foods Table 1: Dietary fiber content of selected  foods.5,6

Click here to View table

 

Mechanism  of  Action

Soluble fiber lowers total and LDL-c cholesterol which can be attributed to enhanced gastric emptying, intestinal binding of bile acids  thus reducing entero-hepatic bile recirculation, lowered dietary cholesterol absorption, affects VLDL composition which then contains  more amount of phospholipids and less of cholesterol, also improves satiety. It also undergoes fermentation to short chain fatty acids  (SCFA) in the colon thus reducing endogenous synthesis of cholesterol. It also decreases dietary glucose absorption thereby down  regulating cholesterol synthesizing anabolic hormone insulin release.7-13

Omega-3  Fatty  Acid  From  a  Plant  Source

They are essential fatty acids for competitive synthesis of eicosonoids which are anti-inflammatory, anti aggregatory and anti-thrombotic  in action.14, 15 Additional physiologic functions of omega-3 fatty acids which may prevent ASCVD include several mechanisms such as;  maintain fluidity of the cell membrane thus facilitating removal of  cholesterol, down regulating phosphotidic acid phosphatase (PAP)  and diacylglycerol acyl tranferase (DGAT) thus reducing fatty acid synthesis, also activates PPAR involved in B-oxidation of fatty acids,  upregualting lipoprotein lipase (LPL) activity thus increasing fats hydrolysis. N-3 fatty acids also modulate sterol regulating element  binding protein (SREBP) and increases degradation of apoprotein B which eventually decreases LDL-c secretion and transport.16-18 Table 2 illustrates nutrient composition of flaxseed.

 

TABLE2:  Various  Flaxseed  Products  Composition Table 2: Various Flaxseed Products  Composition

Click here to View table

 

Phytoestrogens

Area diverse group of naturally occurring non steroidal plant compounds that, because of their structural similarity with estradiol (17-β-estradiol), have the ability to cause estrogenic or/and antiestrogenic effects.20 Phytoestrogen content of selective foods are discussed in  Table 3. There are 2 major classes of phytoestrogens including: Isoflavones contains major bioactive components i.e. daidzein and genistein. They are primarily present in soy as much as 3 mg/g dry weight of soy. Lignans and their major bioactive components secoisolariciresinol and  matairesinol are primarily found in flaxseeds.21

 

Table3:  Phytoestrogens  content  of  foods. Table 3:  Phytoestrogens content of foods.

Click here to View table

 

Mechanism of  Action

Clinical evidence suggest that phytoestrogens is effective in lowering serum cholesterol via a series of mechanism which include; up regulation of LDL-c receptor activity thus increasing its clearance, it also depresses the activity of platelet activating factor receptor  antagonists eventually reducing oxidation of the lipid, the primary step in process of hypercholesterolemic atherosclerosis.  Phytoestrogens also enhances the activity of cholesterol-7 hydoxylase which in turn decreases endogenous cholesterol synthesis. There is  also down regulation of the enzyme tyrosine kinase thus reducing thrombin production and ultimately myocardial infarction risk (MI)  risk.22-27

Soy  Protein

Recently soybeans are considered by many agencies as a source of a complete protein. Hence variety of food such as salad dressings,  beverage powders, cheese, infant formulas and others contains soy proteins. The nutritional value of soy protein is equivalent to that of  animal protein of high BV. For instance, isolated soy protein has a PDCAAS (Protein Digestibility Corrected Amino Acid Score) of 1.0,  which is the same as that of casein and egg protein. 100g of whole soybeans contains 43.2 g of protein.28-30 Biological value of various  soy products like whole soybean, soy milk, soy protein isolates are 96.0, 91.0, and 74.0 respectively.31

Mechanism of Action

Various studies have shown that soy proteins effectively lowers cholesterol through series of mechanisms such as; it binds bile acids thus  reducing enterohepatic recirculation of bile, it also up regulates the apz B and apo E receptor activity thus reduces serum LDL-c levels.    Soy proteins have also shown to reduce HMG-CoA reductase activity, the rate limiting enzyme in cholesterol synthesis and increase cholesterol-7 hydroxylase activity which eventually lowers cholesterol synthesis.31-33

Human  Studies

To identify the majority of human studies on cardiovascular effects of these food items we performed a systematic search of the following  databases: PubMed, Medscape, MDconsult etc from 1995-2009. We used the headings “soluble fiber, botanical n-3 fatty acids, Phytoestrogens and soy proteins and searched the terms “soy, flaxseeds, oats and psyllium.” Using this strategy we identified 75  relevant articles and book chapters. The description below highlights the information on potential CV application of this food items.

Epidemiological Data

Epidemiological data concerning in take of fiber, n-3fatty acids, phytoestrogens and soy proteins are studied as all the discussed food  items are a good sources of this bioactive components. Epidemiological data on dietary fiber and risk of ASCVD are extensive and suggest  in general an inverse correlation between them. Several observational trials have found positive correlation between soy proteins and n-3  fatty acids and secondary prevention of ASCVD. Also observational studies revealed that lignans may reduce ASCVD morbidity and  mortality. The following section describes data from human studies that addresses the Quantity and Effects of soy, flax, oats and  psyllium and their bioactive components on CV risk factors dyslipidemia and others like inflammation, blood pressure and glycemic  control.

Bioactive Components Enriched Food Items 

Soy 

Soy (glycine  max) is a species of legume native to East Asia. The beans contain significant amounts of proteins (38%), isoflavones,  dietary fiber (25-30%) and phytic acid. The principle carbohydrates (30-32%) of mature soybeans are the disaccharide sucrose (2.5-8.2%), trisaccharde raffinose (0.1-1.0%) and the tetrasaccharide stachyose (1.4-4.1%). The majority of soybean carbohydrates can be classed as  belonging to dietary fiber. The Food Drug and Administration (FDA) have approved soy as an official cholesterol-lowering food, along  with other heart and health benefits.35 The major bioactive components that are responsible for improving the lipid profile on soy  interventions are dietary fiber, phytoestrogens and soy proteins and articles related to these are discussed in table 4.

 

Table  4:  Interventional  trial  data  on  lipid  lowering  effects  of  soy Table 4: Interventional trial data on lipid  lowering effects of soy

Click here to View table

 

To  Summarize

The bulk of the evidence from five clinical trials (36-41.) suggest that soy proteins (20-40g/d) or soy isoflavones (30-150mg/d) can  modestly but significantly (p=<0.05) reduce total and LDL cholesterol in both normal and hypercholesterolemic subjects, without a  significant effects on  HDL-c and TG’s. Effects were more prominent in post menopausal women or in subjects with initial mild to  moderate hypercholesterolemia. Desroches S., et al concluded that soy was also effective in shifting LDL particle size to a less  atherogenic pattern. Thus, replacing foods high in saturated fats, trans fats & cholesterol; by soy products containing 30-150 mg/d of isoflavones or    20-40g/d of soy protein have a positive effects against coronary risk factors and related co morbidities e.g.: type 2 DM, hypertension and  others.

Flaxseeds

Flaxseed (linseed) is a smooth, flat and reddish-brown in color is native to the region extending from the eastern Mediterranean to  INDIA. Whole flaxseeds contain 28% dietary fiber (7-10% soluble fiber, 11-18% insoluble fiber); 40% fats (57% of omega-3 fatty acids)  and 21% proteins. it is also the richest source of phtoestrogens-lignans.42 Consumption of flaxseeds have shown to reduce total and LDL  cholesterol as well as platelet aggregation (43,44.). The major bioactive components responsible for hypolipidemidic action of flaxseeds  are dietary fiber, omega-3 fatty acids and lignans and human trials related to these are discussed in detailed in table 5.

 

Table  5:    Interventional  trial  data  on  lipid  lowering  effects  of  flaxseeds Table 5: Interventional trial data on lipid  lowering effects of flaxseeds

Click here to View table

 

To  Summarize

The results of the above discussed 5 clinical trials (43-48.) suggest that flaxseeds (20-50g/d whole or partially defatted respectively) are  efficacious in improving the lipid profile in both normal and mild-moderate hypercholesterolemic subjects. This can be due to the  bioactive components in flax like fiber, n-3 fatty acids and lignans which via several mechanisms as discussed earlier have shown to have  a positive association with reductions in serum total and LDL cholesterol. The effects of flax seeds were more prominent in subjects with  initial hypercholesterolemia like in postmenopausal women. They have also shown to have beneficial effects on other CVD risk factors  like ratios of TC: HDL, LDL: HDL reductions in Apo B 100 and also Lp (A) a strong predictor of CVD. Thus daily incorporation of 20-50g  of whole or partially defatted seeds respectively is effective in improving lipid profile.

Oats

Oats most commonly are available as rolled, crushed into oatmeal or ground into oat flour. Oat bran is the outer casing of the oats. Oats  contain more soluble fiber as compare to any other grain. The soluble fiber in oats comprises of beta glucan, a class of polysaccharide  having mixed linkages. The percentages of beta glucan in various products of whole oats are: oat bran >5.5-23%, rolled oats and oat flour  about 4 %. FDA in 1998 approved to claim food products containing 3g of soluble fiber from oats can be labeled as foods reducing risk of  heart disease.49 The major bioactive components in oats responsible for lipid lowering seem to be beta glucan as reported by various  trials discussed in table 6.

 

TABLE  6:  Interventional  trial  data  on  lipid  lowering  effects  of  oats Table 6: Interventional trial data on lipid  lowering effects of oats

Click here to View table

 

To  Summarize

The results from these studies (50-56.) suggest that oats beta glucan is efficacious in significantly improving lipid profile as it was able to  reduce TC and LDL-c in normal as well as hypercholesterolemic subjects significantly (p=<  0.05). Its intervention also significantly  increased HDL levels (Villasmil R et al). It was also effective in decreasing LDL: HDL and TC: HDL ratios from the baseline significantly.  Queenen et al also found that oats beta glucan is a most fermentable fiber and produces the highest levels of SCFA butyrate compared to  inulin and guar gum in vivo. Oat bran also proven to be beneficial in9; premenopausal women as it increased HDL-c levels and reduced  LDL and TC levels. Oats was also able to reduce classical CVD risk marker i.e. systolic blood pressure (SBP) significantly (p=0.026) in the trial conducted by Saltzman E et al. thus daily incorporation of 25-150g/d of oats or 2.5-6.0g of beta glucan is effective in the treatment of mild-moderate dyslipidemia.

Psyllium

Psyllium seed husk also known as isabgol are the seeds of plant Plantago otava. They are indigestible by the human intestine, thus helps  in holding large amounts of water and making the stools bulky and soft for easy defecation; therefore they are used in the treatment of  constipation, Irritable bowel syndrome, diarrhea etc. As early as in 1998, the FDA already have approved a healthy claim on daily  incorporation of 3-12grams of psyllium along with a low fat diet may reduce risk of heart disease.57 The hypolipidemic effects of psyllium  mucilage have been discussed by various epidemiological studies in table 7.

 

TABLE  7:  Interventional  trial  data  on  lipid  lowering  effects  of  psyllium Table 7: Interventional trial data on lipid  lowering effects of psyllium

Click here to View table

 

To  Summarize

Various human clinical trials on psyllium58-62 suggest that this mucilage enriched food item is effective in lowering total cholesterol,  LDL-c, triglycerides and improving the concentrations of good cholesterol HDL-c in the serum of normal and hypercholesterolemic  subjects. Also the effects were more prominent in postmenopausal women as concluded by Ganji V et al. Psyllium was also effective in  lowering Apo B 100: ApoA1, TC: HDL. LDL: HDL and also increasing conc of Apo A1; the apoprotein of HDL; thus reducing the primary  and secondary ASCVD risk factors. Moreyra A, et al also concluded that 15g/d of psyllium intervention was as effective in lowering  cholesterol as 20 mg of simvastatin alone. Therefore, psyllium 5-15g/d is an effective adjunct therapy and may provide an alternative to  drug therapy for mild-moderate hypercholesterolemic individuals.

Conclusion

Dyslipidemia and ASCVD morbidity is increasing at an alarming rate nationwide and thus it becomes essential to prevent or treat  dyslipidemia to regress the associated metabolic derangements. Fortunately today we can combat this situation initially through diet and  physical activity before switching on to cholesterol lowering drug therapy. Merely by including the discussed hypolipidemic dietary agents in the required dosage as inferred from researches and recommendations i.e. oats 45-150g/d or beta glucan 2.5-6g/g; 20-25g of soy protein or 30-150mg of isoflavones; flaxseeds 20-50g of whole or partially defatted respectively; psyllium 5-15g per day along with a low  fat NCEP followed diet and recommended physical exercise are significantly effective in improving serum lipid profile. The discussed  food items may be effective in preventing, reversing or managing most prevalent chronic conditions as mentioned earlier, and hence may  be claimed as to be “first line therapy” in dyslipidemia management. They can simply be incorporated in ones daily diet as they are less  expensive, readily available, relatively have no side effects, practical and effective in recommended low dosages. They are proven to be  more effective in mild-moderate hyperlipidemics like postmenopausal women who are hesitant to follow a life-long drug therapy for  improving their mildly deranged lipid profile. This review attempts to not only enlist the effects, possible mechanism and bioactive  components of the food item but also to quantify the same to have a desired effect on individual lipid profile.

Limitations

While the majority of the published intervention studies suggest a lipid lowering effects of moderate doses of these food items administration, question remains about the consistency, efficacy, safety and duration of these effects. Future studies will need to clarify  the lipid effects in more varied populations (men and premenopausal women).

References

  1. National  Commission  on  Macroeconomics  and  Health  (NCMH)  Background,  Current  Science,  Vol.  97  (2005).
  2. www.whoindia.org/en/index.
  3. National  Cholesterol  Education  Program  (NCEP)  Expert  Panel  On  Detection,  Evaluation,  and  Treatment  of  High  Blood  Cholesterol  In  Adults  (Adult  Treatment  Panel  Iii)  Final  Report,  Circulation  106,  31-43(2002).
  4. AOAC  Definition  Revised  By  American  Association  of  Cereal  Chemists,  2000.
  5. Anderson  JW,  et  al.,  Dietary  Fiber  Content  of  Selected  Foods;  American  Journal  of  Clinical  Nutrition  vol.47,  440-7  (1988).
    CrossRef
  6. C.  Gopalan  et  al.  Nutritive  value  of  Indian  foods,  National  Institute  of  Nutrition;  2011
  7. Brown  Lisa,  Bernard  Rosner,  Walter  W  Willett  and  Frank  M  Sacks.  Cholesterol-Lowering  Effects  of  Dietary  Fiber:  A  Meta-Analysis.  American  Journal  Of  Clinical  Nutrition,  Vol.  69,  No.  1,  30-42  (1999).
  8. Anderson  JW  et  al.  Dietary  Fiber:  Hyperlipidemia,  Hypertension  and  Coronary  Artery  Disease.  Am  J  Gastroenterol,  vol  81,  issue  10,  907-919(1986).
  9. Schneeman  Bo,  Gallaher  D.  Effects  of  Dietary  Fiber  on  Digestive  Enzyme  Activity  and  Bile  Acids  In  The  Small  Intestine.  Proc  Soc  Exp  Biol  Med;  180,409-414(1985).
    CrossRef
  10. Jenkins  DJ,  Newton  C,  Leeds  AR,  Cummings  JH  (1975).  Effect  of  Pectin,  Guar  Gum,  and  Wheat  Fibre  On  Serum-Cholesterol.  Lancet  1,  1116-1117.
    CrossRef
  11. Hillman  LC,  Peters  SG,  Fisher  CA,  Pomare  EW.  The  Effects  of  the  Fiber  Components  Pectin,  Cellulose  and  Lignin  on  Serum  Cholesterol  Levels.  Am  J  Clin  Nutr  42,  207-213(1985)
    CrossRef
  12. Schneeman  BO.  Dietary  Fiber  and  Gastrointestinal  Function  .Nutrition  Review  45,  129–32(1987)
    CrossRef
  13. Blundell  JE,  Burley  VJ.  Satiation,  Satiety  and  the  Action  of  Fiber  on  Food  Intake.  Int  J  Obes  (Suppl)  11,  9–25(1987).
  14. Shearer  G,  Harris  W,  Pedersen  T,  Newman  J.  Detection  of  Omega-3  Oxylipins  in  Human  Plasma  and  Response  to  Treatment  with  Omega-3  Acid  Ethyl  Esters.  J  Lipid  Res.  51,  2074-2081(2009)
    CrossRef
  15. Holman  R.  The  Slow  Discovery  of  the  Importance  of  Omega  3  Essential  Fatty  Acids  in  Human  Health.  J.  Nutr.  128  (2  Suppl),  427s–433s(1998)
  16. Sanders  T,  Oakley  F,  Miller  G,  et  al  .Influence  Of  N-6  Versus  N-3  Polyunsaturated  Fatty  Acids  In  Diets  Low  In  Saturated  Fatty  Acids  On  Plasma  Lipoproteins  And  Hemostatic  Factors.  Arterioscler  Thromb  Vasc  Biol.  17,  3449–3460  (  1997)
    CrossRef
  17. Harris  W,  Connor  W,  Alam  N,  et  al..  Reduction  of  Postprandial  Triglyceridemia  in  Humans  by  Dietary  N-3  Fatty  Acids.  J  Lipid  Res.  29,  1451–1460(1988)
  18. K.Prasad  et  al..Dietary  Flax  Seed  in  Prevention  of  Hypercholesterolemic  Atherosclerosis.  Atherosclerosis  132(1),  69-76(1997)
    CrossRef
  19. Canadian  Grain  Commission.  Nutritional  profile  of  No.  1  Canada  Western  flaxseed  and  of  yellow  flaxseed  samples.  Canadian  Grain  Commission,  Winnipeg,  MB,  2001.
  20. Yildiz,  Fatih.  Phytoestrogens  in  Functional  Foods.  Taylor  &  Francis  Ltd.  Pp.  3–5,  210-211  (2005)
    CrossRef
  21. Thompson  L,  Boucher  B,  Liu  Z,  Cotterchio  M,  Kreiger  N.  Phytoestrogen  Content  of  Foods  Consumed  In  Canada,  Including  Isoflavones,  Lignans,  and  Coumestan.  Nutrition  and  Cancer  54  (2),  184–201(2006)
    CrossRef
  22. Sacks  F,  Lichtenstein  A,  Van  Horn  L,  Harris  W,  Kris-Etherton  P,  Winston  M.  Soy  Protein,  Isoflavones,  and  Cardiovascular  Health:  An  American  Heart  Association  Science  Advisory  for  Professionals  from  the  Nutrition  Committee.  Circulation  113  (7):  1034–44(2006)
    CrossRef
  23. Turner  J,  Agatonovic  S,  Glass  B.  Molecular  Aspects  of  Phytoestrogen  Selective  Binding  at  Estrogen  Receptors.  J  Pharm  Sci  96  (8),  1879–85(2007).
    CrossRef
  24. Crouse  J,  Morgan  Tm,  Terry  J,  Ellis  J,  Vitolins  M,  Burke  G.  A  Randomized  Trial  Comparing  The  Effect  Of  Casein  With  That  Of  Soy  Protein  Containing  Varying  Amounts  Of  Isoflavones  On  Plasma  Concentrations  Of  Lipids  And  Lipoproteins.  Arch  Intern  Med.159,  2070–2076(1999)
    CrossRef
  25. Wangen  K,  Duncan  A,  Xu  X,  Kurzer  M.  Soy  Isoflavones  Improve  Plasma  Lipids  In  Normocholesterolemic  And  Mildly  Hypercholesterolemic  Postmenopausal  Women.  Am  J  Clin  Nutr.  73,  225–231(2001)
  26. Goodman-Gruen  D,  Kritz-Silverstein  D.  Usual  Dietary  Isoflavone  Intake  Is  Associated  With  Cardiovascular  Disease  Risk  Factors  In  Postmenopausal  Women.  J  Nutr.  131,  1202–1206(2001)
    CrossRef
  27. De  Kleijn  Mjj,  Van  Der  Schouw  Yt,  Wilson  Pwf,  Grobbee  De,  Jacques  Pf.  Dietary  Intake  Of  Phytoestrogens  Is  Associated  With  A  Favorable  Metabolic  Cardiovascular  Risk  Profile  In  Postmenopausal  Us  Women:  The  Framingham  Study.  J  Nutr.    132  no.  2  276-282  (2002)
    CrossRef
  28. FAO/WHO    Protein  Quality  Evaluation  Report  Of  Joint  FAO/WHO  Expert  Consultation,  Food  And  Agriculture  Organization  Of  The  United  Nations,  FAO  Food  And  Nutrition  Paper  No.  51,  Rome.  (1991)
  29. Schaafsma,  G..  The  Protein  Digestibility-Corrected  Amino  Acid  Score.  Journal  Of  Nutrition  130,  1865s-1867s.  (2000)
    CrossRef
  30. Protein  Quality-Report  Of  Joint  FAO’/WHO  Expert  Consultation,  Food  And  Agriculture  Organisation,  Rome,  Fao  Food  And  Nutrition  Paper  51,  1991.
  31. Frank  M.  et  al.  Soy  Protein,  Isoflavones,  And  Cardiovascular  Health.  Circulation  113,  1034-1044.  (  2006)
    CrossRef
  32. Anderson  J,  Johnstone  B,  Cook-Newell  M.  Meta-Analysis  of  The  Effects  Of  Soy  Protein  Intake  On  Serum  Lipids.  N  Engl  J  Med  333,  276–282.  (1995)
    CrossRef
  33. Carroll  K.  Review  of  Clinical  Studies  on  Cholesterol-Lowering  Response  to  Soy  Protein.  J  Am  Diet  Assoc  91,  820-827.  (1991)
  34. Washburn,  Scott;  Burke,  Gregory  L.;  Morgan,  Timothy;  Anthony,  Mary,.  Effect  of  Soy  Protein  Supplementation  on  Serum  Lipoproteins,  Blood  Pressure,  and  Menopausal  Symptoms  in  Perimenopausal  Women.  Menopause  6(1),  7-13.  (1999)
    CrossRef
  35. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=101.82;  Accessed  on  25th  July,  2013
  36. Pipe  Elizabeth  A  et  al..Soy  Protein  Reduces  Serum  LDL  Cholesterol  And  The  LDL  Cholesterol:HDL  Cholesterol  And  Apo  lipoprotein  B:Apolipoprotein  A-I  Ratios  In  Adults  With  Type  2  Diabetes    .  J.  Nutr  139(9),  1700-06.  (  2009)
    CrossRef
  37. Taku  K  et  al..  Soy  Isoflavones  Lower  Serum  Total  And  LDL  Cholesterol  In  Humans:  A  Meta-Analysis  Of  11  Randomized  Controlled  Trials.  American  Journal  Of  Clinical  Nutrition  85(4),  1148-1156.  (2007)
  38. 38.    Clerici  C  et  al..  Pasta  Naturally  Enriched  With  Isoflavone  Aglycons  From  Soy  Germ  Reduces  Serum  Lipids  And  Improves  Markers  Of  Cardiovascular  Risk.  J.  Nutr.  137,  2270-2278.  (2007)
    CrossRef
  39. 39.    Desroches  S  et  al.  Soy  Protein  Favorably  Affects  Ldl  Size  Independently  Of  Isoflavones  In  Hypercholesterolemic  Men  And  Women.  J.  Nutr.  134,  574-579.  (2004).
    CrossRef
  40. Wangen  K,  et  al.  Soy  Isoflavones  Improve  Plasma  Lipids  In  Normocholesterolemic  And  Mildly  Hypercholesterolemic  Postmenopausal  Women.  American  Journal  of  Clinical  Nutrition  73(2),  225-231.  (2001).
  41. Wofford  MR  et  al.  Effect  of  soy  and  milk  protein  supplementation  on  serum  lipid  levels:  a  randomized  controlled  trial.  European  Journal  of  Clinical  Nutrition  66,  419–425(2012)
    CrossRef
  42. Flax  Nutrition  Profile  Analyzed  By  the  American  Oil  Chemists’  Society  (AOCS)  Analysis  by  American  Oil  Chemist’s  Society  (AOCS)  Official  Method  Am  2-93  (2008.)
  43. 43.    Pan  A.,  Danxia  Yu,  Wendy  Demark-Wahnefried,  Oscar  H  Franco  And  Xu  Lin.  Meta-Analysis  of  the  Effects  Of  Flaxseed  Interventions  On  Blood  Lipids.  Am    J  Clin  Nutr  90,  288-297.  (2009)
    CrossRef
  44. Patade  A,  et  al  Flaxseed  Reduces  Total  and  LDL  Cholesterol  Concentrations  in  Native  American  Postmenopausal  Women.  Journal  of  Women’s  Health  17  (3),  355-366.  (2008).
    CrossRef
  45. Mandaşescu  S,  Mocanu  V,  Dăscaliţa  Am,  Haliga  R,  Nestian  I,  Stitt  Pa,  Flaxseed  Supplementation  In  Hyperlipidemic  Patients.  Rev  Med  Chir  Soc  Med  Nat  Lasi,  109  (3),  502-6.  (2005).
  46. 46.    Jenkins  DJ,  et  al..  Health  Aspects  of  Partially  Defatted  Flaxseed,  Including  Effects  on  Serum  Lipids,  Oxidative  Measures,  And  Ex  Vivo  Androgen  and  Progestin  Activity:  A  Controlled  Crossover  Trial.  American  Journal  of  Clinical  Nutrition  69  (3),  395-402.  (1999)
  47. Arjmandi,  B.H  et  al.  Whole  Flaxseed  Consumption  Lowers  Serum  Ldl-Cholesterol  And  Lipoprotein  (A)  Concentrations  In  Postmenopausal  Women.  Nutrition-Research  18(7),  1203-1214.  (1998).
    CrossRef
  48. Fukumitsu  S  et  al.  Flaxseed  lignan  lowers  blood  cholesterol  and  decreases  liver  disease  risk  factors  in  moderately  hypercholesterolemic  men.  Nutrition  Research  30,  441–446(2010)
    CrossRef
  49.   FDA/CFSAN  A  Food  Labeling  Guide:  Appendix  C  Health  Claims,  April  2008,  Accessed  on  25th  July,  2013
  50. Villasmil  R  et  al,.  Oat-Derived  [Beta]-Glucan  Significantly  Improves  HDL-c  And  Diminishes  LDL-c  And  Non-HDL  Cholesterol  In  Overweight  Individuals  With  Mild  Hypercholesterolemia.  American  Journal  of  Therapeutics  14(2),  203-212.  (2007)
    CrossRef
  51. 51.    Saltzman  E.  et  al.  An  Oat-Containing  Hypocaloric  Diet  Reduces  Systolic  Blood  Pressure  and  Improves  Lipid  Profile  Beyond  Effects  of  Weight  Loss  In  Men  And  Women.  Journal  of  Nutrition  131,  1465-1470.  (2001).
    CrossRef
  52. Romero  A,  et  al..  Cookies  Enriched  With  Psyllium  Or  Oats  Lower  Plasma  LDL  Cholesterol  In  Normal  And  Hypercholesterolemic  Men  From  Northern  Mexico.  Journal  Of  The  American  College  Of  Nutrition  17(6),  601-608.  (1998)
    CrossRef
  53. Queenen  K,  et  al..Concentrated  Oats  Beta  Glucan,  A  Fermentable  Fiber  Lowrs  (2007)Cholesterol  in  Hypercholesterolemic  Adults  in  a  Randomized  Control  Trial.  Nutrition  Journal  6,  525-524.
  54. Robitaille  J.  et  al,.  Effect  of  an  Oat  Bran-Rich  Supplement  on  the  Metabolic  Profile  of  Overweight  Premenopausal  Women.  Ann  Nutr  Metab  49,  141-148.  (2005)
    CrossRef
  55. Maki  et  al.  Whole-Grain  Ready-to-Eat  Oat  Cereal,  as  Part  of  a  Dietary  Program  for  Weight  Loss,  Reduces  Low-Density  Lipoprotein  Cholesterol  in  Adults  with  Overweight  and  Obesity  More  than  a  Dietary  Program  Including  Low-Fiber  Control  Foods.  J  Am  Diet  Assoc.;110:205-214.  2010
    CrossRef
  56. Charlton  K  et  al.  Effects  of  6  weeks  consumption  of  B-glucan  rich  oat  products  on  cholesterol  levels  in  mildly  hypercholesterolemic  overweight  adults.  British  Journal  of  Nutrition,  107;  1037-1047(2012)
    CrossRef
  57. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=101.81,  Accessed  on  25th  July,  2013
  58. Ganji  Vijay  and  Jennifer  Kuo.  Serum  Lipid  Responses  to  Psyllium  Fiber:  Differences  between  Pre-  and  Post-Menopausal  Hypercholesterolemic  Women.  Nutrition  Journal  7(22)  7-22.  (2008)
  59. Solà  R,  et  al..  Effects  of  Soluble  Fiber  (Plantago  Ovata  Husk)  On  Plasma  Lipids,  Lipoproteins,  and  Apolipoproteins  in  Men  with  Ischemic  Heart  DiseaseAmerican  Journal  of  Clinical  Nutrition  85(4),  1157-1163.  (2007)
  60. Moreyra  AE  et  al.  Effect  of  Combining  Psyllium  Fiber  with  Simvastatin  in  Lowering  Cholesterol.  Archicves  of  Internal  Medicine  165  (10),  1161-1166.  (2005).
    CrossRef
  61. Anderson  J  W,  et  al.  Long-Term  Cholesterol-Lowering  Effects  of  Psyllium  as  an  Adjunct  to  Diet  Therapy  In  The  Treatment  Of  Hypercholesterolemia.  American  Journal  of  Clinical  Nutrition  71(6),  1433-1438
  62. Sartore  G  et  al.  The  effects  of  psyllium  on  lipoproteins  in  type  II  diabetic  patients.  European  Journal  of  Clinical  Nutrition  (2009)  63,  1269–1271(2000).


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.